
Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

Application of Transformation Matrices for

Generating 3D Game Maps

Ahmad Wicaksono - 13523121

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

ahmadwicaksono031004@gmail.com, 13523121@std.stei.itb.ac.id

Abstract—Transformation matrices play a crucial role in

generating 3D maps for video games, providing the mathematical

framework for essential operations such as translation, scaling,

rotation, and projection within three-dimensional environments.

This research investigates their application in the development of

3D game worlds, starting with a historical analysis of early

implementations, including Battlezone (1980), a pioneering title

that introduced fundamental 3D mapping techniques. The study

examines the mathematical principles underpinning

transformation matrices and explores their impact on rendering

performance and visual detail in modern gaming. By integrating

historical context with contemporary practices, this work aims to

advance the understanding of 3D map generation, highlighting

innovative approaches for improving efficiency and enhancing the

realism of virtual spaces.

Keywords—Translation, Scaling, Rotation, Projetion, Matrices.

I. INTRODUCTION

The evolution of 3D game design has been marked by

significant advancements in computational techniques, many of

which stem from mathematical concepts. Among these,

transformation matrices have emerged as a fundamental tool in

shaping the environments within video games. The use of matrix

manipulation in graphics originated in the 1960s, driven by

innovators like Ivan Sutherland, who developed graphical

systems capable of representing and transforming 3D space.

These foundational advancements shaped our current

understanding of spatial transformations and cemented the

matrix as a fundamental tool in graphical computations..

Transformation matrices are mathematical structures that

allow for the transformation of 3D objects within a virtual

world. These transformations include operations like rotation,

scaling, and translation, all of which enable developers to

position and alter the geometry of objects. The power of

transformation matrices lies in their ability to combine these

operations into a single, efficient process. This capability is

essential in real-time applications, where computational

resources are limited, and smooth performance is critical. As

games evolved, the role of transformation matrices expanded,

enabling the creation of larger, more dynamic worlds that

respond in real-time to player interactions.

A particularly interesting application of transformation

matrices is in procedural generation, a method that uses

algorithms to generate vast game worlds dynamically. This

technique allows developers to create expansive and diverse

environments without manually crafting every detail.

Transformation matrices are applied throughout this process, as

they define the positioning and manipulation of terrain and

objects within these procedurally generated worlds. By

combining randomness with mathematical precision, procedural

generation provides players with expansive and ever-changing

environments that would be impossible to create by hand.

However, the use of transformation matrices in large-scale

game maps introduces significant challenges, particularly in the

area of optimization. As the complexity of a game world

increases, so too does the computational load of applying

transformations to every object and structure. Optimization

techniques are crucial for ensuring that these transformations are

executed efficiently, maintaining the smoothness of gameplay.

Developers often rely on methods such as simplifying

calculations, reducing unnecessary transformations, and using

pre-computed data to improve performance, ensuring that

complex worlds can run on a variety of hardware without

sacrificing quality.

The final key aspect of 3D game design that relies heavily on

transformation matrices is rendering. Once transformations are

applied to objects within a game world, the next step is

rendering, where 3D objects are projected onto a 2D screen. This

process involves multiple stages, such as perspective projection,

to create the illusion of depth and distance in the game. The

efficiency of transformation matrices plays a crucial role in the

quality of this projection, affecting the realism of lighting,

shadows, and the overall visual appeal of the game. Effective

rendering ensures a smooth and visually engaging conversion of

the 3D world into a 2D display.

This research focuses on exploring the role of transformation

matrices in generating 3D game maps, emphasizing their

application in procedural generation, optimization, and

rendering techniques. By investigating the role of these

mathematical tools in the development of modern game worlds,

the study analyzes to highlight how transformation matrices not

only facilitate the creation of interactive environments but also

contribute to their optimization and visual presentation. Through

this analysis, we are hoped to provide a deeper understanding of

mailto:ahmadwicaksono031004@gmail.com
mailto:13523121@std.stei.itb.ac.id

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

the mathematical foundations that underpin the cutting-edge

experiences in 3D game design.

II. THEORETICAL BASIS

A. Linear Transformation
In linear transformation is a function where T:𝑹𝒏 → 𝑹𝒎is

satisfies the following statement:

1. T(x+y) = T(x) + T(y)

2. T(ax) = aT(x)

 for any vectors x, y ∈ 𝑹𝒏 and any scalar a ∈ R.

Identifying f(x) is a linear transformation or not is by looking

at each component of f(x). if each terms is a number times one

of the components of x, then f is a linear transformation.

B. Transformation Matrices
linear transformation can be represented by matrices. If T is a

linear transformation for 𝑹𝒏 → 𝑹𝒎 and x is a column of n, then

T(x) = A(x)

 It is called as transformation matrix of T for some m x n

matrix of A.

 To find the transformation matrix A for a linear

transformation T(x), one can apply T to each vector of the

standard basis and use the resulting vectors as the columns of

the matrix.

Figure 2.1. Matrix Column A

(https://en.wikipedia.org/wiki/Transformation_matrix)

 The matrix representation of vectors and operators varies

depending on the chosen basis. A different basis will yield a

similar matrix, but the process for determining the components

remains consistent. For instance, a vector v can be expressed in

terms of basis vectors,

Figure 2.2. Basis Vectors

(https://en.wikipedia.org/wiki/Transformation_matrix)

With vector coordinates:

Figure 2.3. Vectors v Coordinates

(https://en.wikipedia.org/wiki/Transformation_matrix)

Figure 2.4. Sum Product of v and Basis Vectors

(https://en.wikipedia.org/wiki/Transformation_matrix)

 Now, expressing the result of the transformation matrix A

upon V, in the given basis:

Figure 2.5. Transformation Matrix A(v)

(https://en.wikipedia.org/wiki/Transformation_matrix)

 The most common geometric transformations that leave the

origin unchanged are linear transformations, such as rotation,

scaling, shearing, reflection, and orthogonal projection. Any

affine transformation that is not solely a translation will have a

fixed point, which can be set as the origin to convert the

transformation into a linear one. In two dimensions, these

linear transformations can be expressed using a 2×2 matrix.

1. Stretching
 A stretch in the xy-plane is a linear transformation that

magnifies distances in a specific direction by a constant factor

while leaving distances in the perpendicular direction

unchanged. Here, we focus on stretches along the x-axis and y-

axis. A stretch along the x-axis can be described by the equations

x′=kx and y′=y, where k is a positive constant. If k>1, the

transformation results in a "stretch," while k<1 causes a

"compression," though it is still referred to as a stretch. When

k=1, the transformation becomes the identity transformation,

meaning it has no effect.

 The matrix stretchs by a factor k on the x-axis is given by:

Figure 2.6. Matrix Stretching on X-Axis

(https://en.wikipedia.org/wiki/Transformation_matrix)

 Similarly, a stretch by a factor k on the y-axis has the

form x' = x and y' = ky, so the matrix associated with this

transformation is

Figure 2.7. Matrix Stretching on Y-Axis

https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Transformation_matrix

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

(https://en.wikipedia.org/wiki/Transformation_matrix)

2. Rotation

 For rotation by an angle clockwise about the origin the

functional form is x’= xcos𝜃 + ysin𝜃 and y’ = -xsin𝜃 + ysin𝜃 in

a form of matrix become:

Figure 2.8. Matrix Clockwise Rotation

(https://en.wikipedia.org/wiki/Transformation_matrix)

For a counterclockwise, the matrix become:

Figure 2.9. Matrix Counterclockwise Rotation

(https://en.wikipedia.org/wiki/Transformation_matrix)

3. Shearing
 A shear parallel to x axis has x’ = x + ky and y’ = y in matrix

become:

Figure 2.10. Matrix Shear on X-Axis

(https://en.wikipedia.org/wiki/Transformation_matrix)

Otherwise, a shear parallel to y axis has y’ = y + kx and x’ = x

in matrix become:

Figure 2.11. Matrix Shear on Y-Axis

(https://en.wikipedia.org/wiki/Transformation_matrix)

4. Translation
 A translation matrix moves an object to one or more three

axes. A matrix transformation representing the translation has

the matrix form:

Figure 2.12. Matrix Translation

(https://en.wikipedia.org/wiki/Transformation_matrix)

 Applying translation to a point v reveals that matrix M adds

the translation of tx, ty, and tz to the component of v and produce

the translation and has the matrix form:

Figure 2.13. Product Result of Matrix Translation with the

component of v

(https://en.wikipedia.org/wiki/Transformation_matrix)

C. Ray Casting

 Raycasting is a rendering technique that generate a 3D

perspective from a 2D map. In the early days of computing,

when hardware was much slower, real-time 3D engines were not

feasible. Raycasting gives an efficient solution. It achieves high

speed by performing calculations for each vertical line of the

screen. The most famous game utilizing this method is

Wolfenstein 3D.

Figure 2.14. Wolfenstein 1990 Gameplay

(https://online.oldgames.sk/play/dos/wolfenstein-3d/7739)

 The raycasting engine in Wolfenstein 3D was highly

simplified, enabling it to run even on a 286 computer. All walls

in the game had the same height and were represented as

orthogonal squares on a 2D grid, as illustrated in a map for

Wolfenstein 3D.

This engine had significant limitations, making features like

stairs, jumping, or height variations impossible to implement.

However, later games such as Doom and Duke Nukem 3D

employed more advanced raycasting engines, introducing

capabilities like sloped walls, varying heights, textured floors

and ceilings, and transparent walls. In these games, sprites

(enemies, items, and other objects) were represented as 2D

images, though this tutorial does not delve into sprites.

It’s important to note that raycasting is different with

raytracing. Raycasting is a fast, semi-3D technique capable of

running in real-time, even on devices with 4MHz graphical

calculators. On the contrary, raytracing is a true 3D rendering

technique that produces realistic visuals with reflections and

https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Transformation_matrix
https://online.oldgames.sk/play/dos/wolfenstein-3d/7739

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

shadows. Raytracing has only recently become viable for real-

time use in high-resolution, complex scenes thanks to

advancements in computing power.

III. IMPLEMENTATION METHOD

1. 2D Maps
 2D map represents as a matrix where each element encodes

attributes of corresponding spatial units. Formally, it is defined

as M[i][j] where i and j represent row and column indices and

the values state walls (1) and spaces (0). Rendering a 2D map

involves iterating through the grid and visualizing each cell with

distinct colors or patterns to reflect its state for player's position

to enhance interactivity. The straightforward structure of 2D

maps make it to be a critical tool for simulating environments,

enabling spatial reasoning and analysis in both research and

practical applications.

Figure 3.1. Example of 2D Maps

(Writer’s Archive)

2. Rendering 3D Maps with Raycasting
 The method of raycasting, as implemented in the provided

render_3D function, enables the rendering of a three-

dimensional environment from a two-dimensional map by

projecting rays and calculating their interactions with walls.

Each ray in the function represents a column of the screen, with

its intersection determining the height and shading of a wall

segment. The wall height is adjusted using the apply_shear

function, which incorporates a shear factor to modify the visual

perspective, simulating distortions or dynamic perspectives in

the scene. Shading is calculated by reducing brightness

proportionally to the distance of the ray’s intersection, using a

darkness factor to simulate lighting and depth perception. The

computed wall segment is then rendered as a rectangle,

positioned based on the ray’s index and centered vertically using

offsets. This approach efficiently simulates three-dimensional

perspectives by processing only visible rays, aligning with the

computational efficiency of raycasting while demonstrating

practical integration into rendering.

Figure 3.2. Rendering 3D Maps

(Writer’s Archive)

3. Shear Transformation
 The shear transformation is applied using the shear matrix

function. This matrix modifies the x-coordinates by a factor of

shx × y and the y-coordinates by a factor of shy × x.

Figure 3.3. Shear Transformation Function

(Writer’s Archive)

4. Rotation Transformation
 The rotation transformation is handled by the rotation

matrixfunction. It rotates points around the origin using

trigonometric equations based on the given angle.

Figure 3.4. Rotation Matrix for Transformation

(Writer’s Archive)

5. Translation Transformation
 The translation is achieved with the translation matrix

function. It shifts points in the 2D space by adding tx to the x-

coordinate and ty to the y-coordinate to get a moving objects or

the player’s position better.

Figure 3.5. Translation Matrix for Transformation

(Writer’s Archive)

6. Application of Transformation to 3D Maps

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

 In game, transformations are applied sequentially using the

apply_transformation function. First, shear is applied to distort

the space, followed by rotation to adjust the player’s

perspective, and finally translation to position the player

correctly in the transformed environment. This order ensures a

consistent and logical transformation.

Figure 3.6. Application of Transformation Matrices

(Writer’s Archive)

IV. IMPLEMENTATION TESTING

1. 2D and 3D Maps Generator

 The implementation testing of the 2D and 3D map generation

focuses on evaluating the process of dynamically constructing

and rendering both map types within the game environment. The

2D map generation involves creating a grid-based layout where

tiles represent different types of terrain (e.g., walls, floors),

providing a simple but effective way to organize the game

world. The 3D map generation, on the other hand, uses

raycasting techniques to simulate depth perception and produce

a first-person perspective, where rays are cast from the player's

position to detect collisions with walls and calculate the

appropriate visual rendering based on distance. This testing

ensures that both map generation methods function seamlessly,

allowing for smooth transitions between the 2D grid and the

immersive 3D view while maintaining accuracy in spatial

representation.

Figure 4.1. Generating 2D and 3D Maps

(Writer’s Archive)

2. Shear Effect
 The walls should be rendered with a static color that is

affected by distance but remains consistent across frames. The

shear effect should subtly distort the height of the walls, making

them appear skewed in y directions.

 By changing the value of the shear factor, we can observe that

the height of the walls appears subtly distorted along the y-axis.

This means the walls will look like they're being "tilted" or

"skewed" in the vertical direction, which can create a more

dynamic or even a slanted perspective of the 3D environment.

Figure 4.3. Shear Effect

(Writer’s Archive)

 The shear effect has its value, which significantly influences

the distortion applied to the 3D wall rendering. The shear factor

controls the degree to which the walls are "stretched" or

"compressed" horizontally based on the player's position or

other dynamic factors in the environment. To test the shear

factor, we use four distinct values of shear factor, each

representing a different level of shear distortion:

1. Shear Factor = 0. This value represents no shear

effect, meaning the walls will be rendered without any

horizontal stretching or compression, maintaining their

original proportions.

2. Shear Factor = 0.1. This value represents little shear

effect.

3. Shear Factor = 0.5. A moderate shear value that

introduces a slight horizontal distortion. This value will

result in walls being stretched outward, creating a

subtle perspective shift that mimics slight warping

effects.

4. Shear Factor = 1. This value represents a more

pronounced shear effect, with walls experiencing a

more noticeable horizontal distortion. The walls will

appear significantly stretched, simulating exaggerated

perspective or fisheye-like effects.

3. Rotation Effect
 The rotation effect is achieved by altering the angle at which

rays are cast, based on the player's current view direction. As the

player turns left or right, the starting angle of each ray changes,

adjusting the perceived orientation of the walls. This creates the

illusion that the player is rotating within a 3D environment. By

calculating the angle for each ray relative to the player's current

angle, the entire scene appears to rotate, with walls shifting

positions accordingly. The rotation effect ensures that as the

player moves their viewpoint, the surrounding environment

adjusts in a natural, immersive manner, giving the feeling of

turning in place.

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

Figure 4.2. Rotation Effect

(Writer’s Archive)

 Rotation testing was implemented at four angle values: 1.19°,

49.89°, 236.1°, and 316.32°. These angles were specifically

chosen to evaluate the system’s ability to handle various levels

of rotational movement in a 3D environment.

4. Translation Effect
 The translation effect shifts the entire 3D environment

horizontally or vertically, creating the sensation of moving

through the scene. By modifying the translation_x and

translation_y values, the world moves along with the player,

making it feel as though the player is walking or flying through

the space. This effect alters the position of the walls and other

elements in the environment, pushing them along the x or y-axis,

thereby providing a dynamic movement through the world. The

translation effect is essential for creating an interactive

exploration experience, allowing the player to navigate the

scene while maintaining a consistent perspective.

Figure 4.4. Translation Effect

(Writer’s Archive)

V. CONCLUSION

The research and implementation of rotation, translation, and

shear effects in 3D raycasting are particularly relevant for first-

person perspective (FPS) games and immersive virtual

environments. These types of games often require dynamic

camera movements and environmental interactions that respond

smoothly to player input. The rotation effect enhances the

player’s ability to look around and explore the world, creating a

sense of agency. The translation effect enables realistic

movement through the game world, allowing the player to

navigate environments in a fluid and intuitive way. The shear

effect could be used in artistic or stylized games where the

environment intentionally distorts to create unique visual

experiences, or in procedural generation for creating dynamic,

ever-changing landscapes. As these techniques improve, they

could be incorporated into a wide range of games, including

action-adventure games, simulation games, strategy games, and

virtual reality (VR) experiences. The continuous advancement

of these visual and gameplay techniques will be essential for the

development of next-generation games that offer deep,

interactive worlds..

VII. ACKNOWLEDGMENT

The writer would like to express heartfelt gratitude to God for

His continuous blessings, wisdom, and guidance throughout this

academic journey. Without His divine assistance, the

completion of this research paper would not have been possible.

The writer would also like to appreciate the Linear and

Geometric Algebra lecturers, Ir. Rila Mandala, M.Eng., Ph.D.,

and Dr. Ir. Rinaldi Munir, M.T., for dedication to teaching. Their

expertise, patient guidance, and willingness to share knowledge

have helped in shaping the writer's understanding of the subject.

The writer would like to express gratitude to family and

friends who have been constantly supporting. Their love and

support have made the completion of this research paper

possible.

REFERENCES

[1] Pygame 2.6.0 Release. [Online]. Available:

https://www.pygame.org/news. [Accessed: December 28,

2024].

[2] "Matrix Transformation Hierarchy." [Online]. Available:

https://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures

/05_transformation_hierarchy.pdf. [Accessed: December 30,

2025].

[3] "Linear Transformation Definition (Euclidean)." [Online].

Available:

https://mathinsight.org/linear_transformation_definition_euclid

ean. [Accessed: December 31, 2024].

[4] "Spatial Transformation Matrices." [Online]. Available:

https://www.brainvoyager.com/bv/doc/UsersGuide/CoordsAnd

Transforms/SpatialTransformationMatrices.html. [Accessed:

January 1, 2025].

[5] Gentle, James E. "Matrix Transformations and

Factorizations." In Matrix Algebra: Theory, Computations, and

Applications in Statistics. Springer, 2007. ISBN

9780387708737.

[6] Jules, C. "2D Transformation Matrices Baking," Feb. 25,

2015.

https://www.pygame.org/news
https://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/05_transformation_hierarchy.pdf
https://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/05_transformation_hierarchy.pdf
https://mathinsight.org/linear_transformation_definition_euclidean
https://mathinsight.org/linear_transformation_definition_euclidean
https://www.brainvoyager.com/bv/doc/UsersGuide/CoordsAndTransforms/SpatialTransformationMatrices.html
https://www.brainvoyager.com/bv/doc/UsersGuide/CoordsAndTransforms/SpatialTransformationMatrices.html

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

[7] "Wolfenstein 3D." [Online]. Available:

https://online.oldgames.sk/play/dos/wolfenstein-3d/7739.

[Accessed: January 1, 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 2 Januari 2025

Ahmad Wicaksono/13523121

https://online.oldgames.sk/play/dos/wolfenstein-3d/7739

